

 [image: License]
 [https://pypi.python.org/pypi/groundwork-spreadsheets][image: Supported versions]
 [https://pypi.python.org/pypi/groundwork-spreadsheets][image: https://readthedocs.org/projects/groundwork-spreadsheets/badge/?version=latest]
 [https://readthedocs.org/projects/groundwork-spreadsheets/][image: Travis-CI Build Status]
 [https://travis-ci.org/useblocks/groundwork-spreadsheets][image: https://coveralls.io/repos/github/useblocks/groundwork-spreadsheets/badge.svg?branch=master]
 [https://coveralls.io/github/useblocks/groundwork-spreadsheets?branch=master][image: Code quality]
 [https://scrutinizer-ci.com/g/useblocks/groundwork-spreadsheets/][image: PyPI Package latest release]
 [https://pypi.python.org/pypi/groundwork-spreadsheets]
groundwork-spreadsheets

This is a groundwork [https://groundwork.readthedocs.io] extension package for reading and writing spreadsheet files.

groundwork [https://groundwork.readthedocs.io] is a plugin based Python application framework, which can be used to create various types of applications:
console scripts, desktop apps, dynamic websites and more.

Visit groundwork.useblocks.com [http://groundwork.useblocks.com]
or read the technical documentation [https://groundwork.readthedocs.io] for more information.

Functions

ExcelValidationPattern

Target audience are users who need to read well structured Excel documents with minimal overhead.
The Excel documents can be validated in various ways to detect input data problems.

	Uses the library openpyxl [https://openpyxl.readthedocs.io/en/default/]

	Can read Excel 2010 files (xlsx, xlsm)

	Configure your sheet using a json file

	Auto detect columns by names. You can move columns without affecting the read routines.

	The data layout can be
	column based: headers are in a single row and the data is below

	row based: headers are in a single column and the data is on the right

	Define column types and verify cell values against them
	Date

	Enums (e.g. only the values ‘yes’ and ‘no’ are allowed)

	Floating point numbers with optional min/max check

	Integer numbers with optional min/max check

	String with optional regular expression pattern check

	Exclude data row/columns based on filter criteria

	Output is a dictionary of the following form row or column number -> header name -> cell value

	Extensive logging of problems

Package content

	Usage
	example.py

	config.json

	Configuration
	sheet_config

	orientation

	headers_index_config
	row_index
	first

	last

	column_index
	first

	last

	data_index_config
	row_index
	first

	last

	column_index
	first

	last

	data_type_config
	Common parameters

	type
	automatic

	date

	enum

	float

	integer

	string

	filter_properties

	Changelog
	0.3.0

	0.2.0

	0.1.2

	0.1.1

	0.1.0

Usage

An example for the usage can be found in the example folder in the root of the package.

Here is the content as a quick reference.

example.py

from groundwork_spreadsheets import ExcelValidationPattern
from groundwork import App

def Application():
 app = App(plugins=[], strict=True)
 return app

class ReadCustomExcel(ExcelValidationPattern):
 def __init__(self, app, name=None, *args, **kwargs):
 self.name = name or self.__class__.__name__
 super(ReadCustomExcel, self).__init__(app, *args, **kwargs)

 def activate(self):
 pass

 def deactivate(self):
 pass

if __name__ == '__main__':
 app = App(config_files=['configuration.py'], plugins=[], strict=True)
 plugin = ReadCustomExcel(app)
 data = plugin.excel_validation.read_excel('config.json', 'example.xlsx')
 for row in data:
 headers = data[row]
 for header in headers:
 print("Row {0}, Header '{1}': {2}".format(row, header, data[row][header]))

config.json

{
 "sheet_config": "active",
 "orientation": "column_based",
 "headers_index_config": {
 "row_index": {
 "first": "automatic",
 "last": "automatic"
 },
 "column_index": {
 "first": "automatic",
 "last": "automatic"
 }
 },
 "data_index_config": {
 "row_index": {
 "first": "automatic",
 "last": "automatic"
 },
 "column_index": {
 "first": "automatic",
 "last": "automatic"
 }
 },
 "data_type_config": [
 {
 "header": "Date",
 "fail_on_type_error": false,
 "fail_on_empty_cell": false,
 "fail_on_header_not_found": true,
 "type": {
 "base": "date"
 }
 },
 {
 "header": "Enum",
 "fail_on_type_error": true,
 "fail_on_empty_cell": true,
 "fail_on_header_not_found": true,
 "type": {
 "base": "enum",
 "enum_values": ["ape", "dog", "cat"],
 "filter": {
 "whitelist_values": ["ape", "cat"]
 }
 }
 },
 {
 "header": "Float",
 "fail_on_type_error": true,
 "fail_on_empty_cell": true,
 "fail_on_header_not_found": true,
 "type": {
 "base": "float",
 "minimum": 1.1,
 "maximum": 334
 }
 },
 {
 "header": "Integer",
 "fail_on_type_error": true,
 "fail_on_empty_cell": true,
 "fail_on_header_not_found": true,
 "type": {
 "base": "integer",
 "minimum": -3,
 "maximum": 30
 }
 },
 {
 "header": "Text",
 "fail_on_type_error": true,
 "fail_on_empty_cell": true,
 "fail_on_header_not_found": true,
 "type": {
 "base": "string",
 "pattern": "^Text [0-9]$"
 }
 }
],
 "filter_properties": {
 "excluded_fail_on_empty_cell": false,
 "excluded_fail_on_type_error": false,
 "excluded_enable_logging": false
 }
}

Configuration

This is the base structure of the configuration .json file:

{
 "sheet_config": "active",
 "orientation": "column_based",
 "headers_index_config": {
 "row_index": {
 "first": "automatic",
 "last": "automatic"
 },
 "column_index": {
 "first": "automatic",
 "last": "automatic"
 }
 },
 "data_index_config": {
 "row_index": {
 "first": "automatic",
 "last": "automatic"
 },
 "column_index": {
 "first": "automatic",
 "last": "automatic"
 }
 },
 "data_type_config": [
 {
 "header": "Text Column",
 "type": {
 "base": "string",
 "convert_numbers": true,
 "pattern": "^Text [0-9]$"
 }
 },
 {
 "header": "Animals Column",
 "fail_on_type_error": true,
 "fail_on_empty_cell": true,
 "fail_on_header_not_found": true,
 "type": {
 "base": "enum",
 "enum_values": ["ape", "dog", "cat"],
 "filter": {
 "whitelist_values": ["ape", "cat"]
 }
 }
 }
],
 "filter_properties": {
 "excluded_fail_on_empty_cell": false,
 "excluded_fail_on_type_error": false,
 "excluded_enable_logging": false
 }
}

sheet_config

This parameter configures which worksheet to choose. Only one worksheet can be read in one call.

Possible values are:

	Value
	Type
	Example
	Meaning

	active
	string
	“sheet_config”: “active”
	Chooses the active worksheet, that is the one that was
active when last saving the workbook

	first
	string
	“sheet_config”: “first”
	Chooses the first worksheet

	last
	string
	“sheet_config”: “last”
	Chooses the last worksheet

	name:<sheet_name>
	string
	“sheet_config”: “name:sheet2”
	Chooses the worksheet with the name <sheet_name>

	<index>
	integer
	“sheet_config”: 2
	The index of the worksheet. The first sheet gets index 1.

orientation

This parameter specifies the layout of the worksheet.

Possible values are:

	Value
	Type
	Example
	Meaning

	column_based
	string
	“orientation”: “column_based”
	Each header and its data is in one column

	row_based
	string
	“orientation”: “row_based”
	Each header and its data is in one row

ASCII art for column_based

* header1 header2 header3 *

* value1 value1 value1 *
* *
* value2 value2 value2 *
* *
* value3 value3 value3 *

ASCII art for row_based

* header1 * value1 value2 value3 *
* * *
* header2 * value1 value2 value3 *
* * *
* header3 * value1 value2 value3 *

headers_index_config

This dictionary specifies the location of the headers in the worksheet.

The dictionary always has 2 keys:

	Value
	Type
	Meaning

	row_index
	dictionary
	Defines the row cells for the headers in the chosen orientation.

	column_index
	dictionary
	Defines the column cells for the headers in the chosen orientation.

Note

Note that all row and column indices are 1-based. That means the upper left cell of a worksheet is in row 1
and column 1, just like in Excel.

row_index

This dictionary specifies the row cells for the headers in the chosen orientation.
In column based orientation, the row_index matrix spans several cells in one row.
In row based orientation,

The dictionary always has 2 keys:

	Value
	Type
	Meaning

	first
	string or integer
	Defines the first header row.

	last
	string or integer
	Defines the last header row.

first

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“first”: “automatic”
	A default of 1 is chosen.

	<row_index>
	integer
	“first”: 2
	A manually integer value greater than 1.

Note

For column_based orientation, the first and last row must be identical if both are set manually.

last

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“last”: “automatic”
	
column_based The value of the entry in ‘first’ is chosen. If it’s set to ‘automatic’, 1 is chosen.

row_based The worksheet dimensions are read by the library openpyxl. The greatest row index (of all rows) is chosen.

	<row_index>
	integer
	“last”: 2
	A manually set integer value not smaller than 1.

	severalEmptyCells:<cell_count>
	string
	“last”: “severalEmptyCells:3”
	
column_based Same as ‘automatic’. The given <cell_count> value has no meaning.

row_based The last header row will be chosen using a search algorithm. If, after a non-empty row, several (<cell_count>) directly following empty cells are found, the last non-empty row is considered the last row.

column_index

This dictionary specifies the column cells for the headers in the chosen orientation.

first

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“first”: “automatic”
	A default of 1 is chosen.

	<row_index>
	integer
	“first”: 2
	A manually integer value greater than 1.

Note

For row_based orientation, the first and last row must be identical if both are set manually.

last

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“last”: “automatic”
	
column_based The worksheet dimensions are read by the library openpyxl. The greatest column index (of all columns) is chosen.

row_based The value of the entry in ‘first’ is chosen. If it’s set to ‘automatic’, 1 is chosen.

	<row_index>
	integer
	“last”: 2
	A manually set integer value not smaller than 1.

	severalEmptyCells:<cell_count>
	string
	“last”: “severalEmptyCells:3”
	
column_based The last header column will be chosen using a search algorithm. If, after a non-empty column, several (<cell_count>) directly following empty cells are found, the last non-empty column is considered the last column.

row_based Same as ‘automatic’. The given <cell_count> value has no meaning.

data_index_config

This dictionary specifies the location of the data in the worksheet.

The dictionary always has 2 keys:

	Value
	Type
	Meaning

	row_index
	dictionary
	Defines the row cells for the data in the chosen orientation.

	column_index
	dictionary
	Defines the column cells for the data in the chosen orientation.

Note

Note that all row and column indices are 1-based. That means the upper left cell of a worksheet is in row 1
and column 1 (==’A’), just like in Excel.

row_index

This dictionary specifies the row cells for the data in the chosen orientation.

The dictionary always has 2 keys:

	Value
	Type
	Meaning

	first
	string or integer
	Defines the first data row.

	last
	string or integer
	Defines the last data row.

first

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“first”: “automatic”
	
column_based A default of <first_header_row> + 1 is chosen. That means the data comes directly after the headers.

row_based The <first_header_row> is chosen.

	<row_index>
	integer
	“first”: 2
	A manually integer value greater than 1.

last

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“last”: “automatic”
	
column_based The worksheet dimensions are read by the library openpyxl. The greatest row index (of all rows) is chosen.

row_based The value of the entry in ‘last header row’ is chosen or its automatically calculated value is taken.

	<row_index>
	integer
	“last”: 2
	A manually set integer value not smaller than 1.

	severalEmptyCells:<cell_count>
	string
	“last”: “severalEmptyCells:3”
	
column_based The last data row will be chosen using a search algorithm. If, after a non-empty row, several (<cell_count>) directly following empty rows are found, the last non-empty row is considered the last row. A row is empty if all columns in that row are empty.

row_based The value of the entry in ‘last header row’ is chosen or its automatically calculated value is taken.

column_index

This dictionary specifies the column cells for the data in the chosen orientation.

first

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“first”: “automatic”
	
column_based The <first_header_column> is chosen.

row_based A default of <first_header_column> + 1 is chosen. That means the data comes directly after the headers.

	<row_index>
	integer
	“first”: 2
	A manually integer value greater than 1.

last

Possible values are:

	Value
	Type
	Example
	Meaning

	automatic
	string
	“last”: “automatic”
	
column_based The value of the entry in ‘last header column’ is chosen or its automatically calculated value is taken.

row_based The worksheet dimensions are read by the library openpyxl. The greatest column index (of all columns) is chosen.

	<row_index>
	integer
	“last”: 2
	A manually set integer value not smaller than 1.

	severalEmptyCells:<cell_count>
	string
	“last”: “severalEmptyCells:3”
	
column_based The value of the entry in ‘last header column’ is chosen or its automatically calculated value is taken.

row_based The last data column will be chosen using a search algorithm. If, after a non-empty column, several (<cell_count>) directly following empty columns are found, the last non-empty column is considered the last column. A column is empty if all rows in that column are empty.

data_type_config

This array specifies the data type for each header. The validation is done against this specification.

Possible base types are:

	Value
	Meaning

	automatic
	No validation is done. The value is passed as read by openpyxl.

	date
	A Python datetime.datetime instance. The validation fails if a cell does not contain a date.

	enum
	A set of allowed strings can be specified. The validation fails if a cell contains text which is not part of the allowed string list.

	float
	A floating point number is expected. Minimum and maximum can optionally be specified.

	integer
	An integer number is expected. Minimum and maximum can optionally be specified.

	string
	A string is expected. A regular expression pattern can optionally be specified. The Python re.search implementation is used.

Common parameters

	Parameter
	Type
	Meaning

	header
	string
	The name of the header. The worksheet will be searched for this name.

	fail_on_type_error
	bool
	
If true, a ValueError exception is raised if the type does not fit or a constraint fails.

If false, just a log message (log level error) is dumped if the type does not fit or a constraint fails.

	fail_on_empty_cell
	bool
	
If true, a ValueError exception is raised if an empty cell is found.

If false, just a log message (log level error) is dumped if an empty cell is found.

	fail_on_header_not_found
	bool
	
If true, a ValueError exception is raised if the corresponding header cannot be found in the spreadsheet.

If false, just a log message (log level error) is dumped if the corresponding header cannot be found in the spreadsheet. The output data dictionary will not contain that header.

The field header is mandatory for all types.

The following fields are optional for all types. If not given, a default of true is chosen for these.

	fail_on_type_error

	fail_on_empty_cell

	fail_on_header_not_found

type

The field base is mandatory for all types.

automatic

Specification:

"type": {
 "base": "automatic"
}

date

Specification:

"type": {
 "base": "date"
}

enum

Specification:

"type": {
 "base": "enum",
 "enum_values": [<list_of_string_values>]
}

The enum_values field is mandatory.

The enum type supports filtering using a whitelist of enum values:

"type": {
 "base": "enum",
 "enum_values": [<list_of_string_values>],
 "filter": {
 "whitelist_values": [<list_of_allowed_values>]
 }
}

Within the filter property, the whitelist_values field is mandatory.

The target data will only returns data rows/columns containing the specified allowed values. It’s possible to have
filters on several enum types. In this case, only rows/columns are returned which are contained by both filters.

float

Specification:

"type": {
 "base": "float",
 "minimum": <min_value>,
 "maximum": <max_value>
}

The minimum field is optional. The maximum field is optional.
If the minimum or maximum constraint fails, it will be handled as a type error (see Common parameters).

Note

For documents saved by MS Excel, openpyxl returns integer values with the ‘float’ data type (e.g. 33345.0).
The ExcelValidationPattern checks if the float can be converted to int without precision loss
(using ‘value.is_integer()’).
If yes a type cast to int is done, that means you can always expect the ‘int’ type.
If no it is a type error.

integer

Specification:

"type": {
 "base": "integer",
 "minimum": <min_value>,
 "maximum": <max_value>
}

The minimum field is optional. The maximum field is optional.
If the minimum or maximum constraint fails, it will be handled as a type error (see Common parameters).

Note

For Python 2.7, openpyxl returns integers with the ‘long’ data type.
For Python 3, openpyxl returns text with the ‘int’ data type.
Both are accepted by the above integer type. No type conversion is done by ExcelValidationPattern.

string

Specification:

"type": {
 "base": "string",
 "convert_numbers": <bool>,
 "pattern": "<regex_pattern>"
}

The pattern field is optional.
If the pattern constraint fails, it will be handled as a type error (see Common parameters).

The pattern will be checked using the Python re.search routine. If you would like to check the whole cell value,
use the anchors ^ and $.

Note

Both types ‘unicode’ and ‘str’ are accepted by above string type.
No type conversion is done by ExcelValidationPattern.

The convert_numbers field is optional.

If it is true, the numeric types ‘int’, ‘long’ and ‘float’ are casted to a string using the str() routine.
As a consequence, no type error will occur.

If it is false, the numeric types ‘int’, ‘long’ and ‘float’ lead to a type error.
This is helpful in situation where the type can either be a number or text.

filter_properties

This dictionary specifies how filters affect errors of excluded rows/columns.
Excluded rows/columns are commonly not of primary interest to the user, so it makes sense to mask errors that might
arise there. The variables set here can overwrite the data type definitions.

	Parameter
	Type
	Meaning

	excluded_fail_on_empty_cell
	bool
	
If true, an empty cell in an excluded row/column will still raise an exception.

If false, an empty cell in an excluded row/column will not raise an exception.

	excluded_fail_on_type_error
	bool
	
If true, a type error in an excluded row/column will still raise an exception.

If false, a type error in an excluded row/column will not raise an exception.

	excluded_enable_logging
	bool
	
If true, empty cell and type errors which are configured not to raise an exception, will still be logged.

If false, empty cell and type errors which are configured not to raise an exception, will not be logged.

Example 1:

"filter_properties": {
 "excluded_fail_on_empty_cell": false,
 "excluded_fail_on_type_error": false,
 "excluded_enable_logging": false
}

In above case, errors in excluded rows/columns will neither raise an exception nor be logged.

Example 2:

"filter_properties": {
 "excluded_fail_on_empty_cell": true,
 "excluded_fail_on_type_error": false,
 "excluded_enable_logging": true
}

In above case, empty cell errors in excluded rows/columns will raise exceptions.
Type errors in excluded rows/columns, however, will just be logged.

Changelog

0.3.0

	Added ‘convert_numbers’ key to string type.
This accepts numbers for string types too.

	Added coveralls.io supprt

	Added scrutinizer-ci.com support

	Fixed pylint issues

0.2.0

	Added exclusion function for data row/columns based on filter criteria.
Currently only enums whitelisting is supported.

	Expanded test cases with documents saved by MS Excel 2013

0.1.2

	Added debug log messages for automatic last row/column detection

	Fixed a small logging bug

	Example: Added a configuration file to enable logging

	Example: Added a readme

	Description: Some rewriting

0.1.1

	Added description in setup.py for PyPi

0.1.0

Initial version

Index

 nav.xhtml

 Table of Contents

 		groundwork-spreadsheets

 		Usage

 		example.py

 		config.json

 		Configuration

 		sheet_config

 		orientation

 		headers_index_config

 		row_index

 		column_index

 		data_index_config

 		row_index

 		column_index

 		data_type_config

 		Common parameters

 		type

 		filter_properties

 		Changelog

 		0.3.0

 		0.2.0

 		0.1.2

 		0.1.1

 		0.1.0

_static/logo.png

_static/ajax-loader.gif

_static/comment-close.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

